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Abstract

The purpose of image registration is to spatially align two or more single-modality images taken at different times, or several images
acquired by multiple imaging modalities. Intensity-based registration usually requires optimization of the similarity metric between the
images. However, global optimization techniques are too time-consuming, and local optimization techniques frequently fail to search
the global transformation space because of the large initial misalignment of the two images. Moreover, for large non-overlapping area reg-
istration, the similarity metric cannot reach its optimum value when the two images are properly registered. In order to solve these problems,
we propose a novel Symmetric Scale Invariant Feature Transform (symmetric-SIFT) descriptor and develop a fast multi-modal image reg-
istration technique. The proposed technique automatically generates a lot of highly distinctive symmetric-SIFT descriptors for two images,
and the registration is performed by matching the corresponding descriptors over two images. These descriptors are invariant to image scale
and rotation, and are partially invariant to affine transformation. Moreover, these descriptors are symmetric to contrast, which makes it
suitable for multi-modal image registration. The proposed technique abandons the optimization and similarity metric strategy. It works
with near real-time performance, and can deal with the large non-overlapping and large initial misalignment situations. Test cases involving
scale change, large non-overlapping, and large initial misalignment on computed tomography (CT) and magnetic resonance (MR) datasets
show that it needs much less runtime and achieves better accuracy when compared to other algorithms.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The purpose of image registration is to spatially align
two or more single-modality images taken at different
times, or several images acquired by multiple imaging
modalities [1–5]. Image registration techniques can be gen-
erally classified into two classes [1], namely intensity-based
techniques and feature-based techniques.

1.1. Intensity-based registration

Many reports have focused on intensity-based methods
[6–16], in which the intensity values are used to measure

the similarity between two images. These methods usually
require optimization of the similarity metric between the
images, and the registration is achieved with the transforma-
tion that maximizes similarity metric. Intensity-based meth-
ods do not generally require extensive preprocessing, such as
segmentation or feature extraction. The similarity metric is
chosen so that its optimum value is achieved when the two
images are properly registered. The simplest similarity func-
tion is called the sum of squared differences (SSDs), which is
often used in single-modal registration. The similarity
between multi-modal images can be measured by some pow-
erful metric methods, such as cross correlation (CC) and
mutual information (MI). However, neither CC nor MI
can deal with the registration situations in which the non-
overlapping area is large. The optimization methods of
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intensity-based registration include global optimization and
local optimization methods. The searching space of optimi-
zation, which is the class of potential transformations, is usu-
ally huge so that the global optimization methods are too
time-consuming. On the other hand, intensity-based regis-
tration methods with local optimization often miss the glo-
bal optimum when the initial misalignment is large.

1.2. Feature-based registration

Feature-based methods [17–20] typically involve extract-
ing features such as boundaries and landmark points, and
then applying a match metric to find the correspondences
between two images. Finally, the registration process is per-
formed by maximizing a similarity measure computed from
the correspondences. It should be noted that in all feature-
based schemes the accuracy of the registration is dictated
by the accuracy of the feature extraction or segmentation.
Due to the reduction in the problem space, feature-based
methods are significantly faster at computing than inten-
sity-based methods. However, extraction of features is not
always an easy task. Inaccuracies in feature extraction have
a severe effect on a subsequent registration step.

1.3. Overview of the proposed method

In this paper, we propose a symmetric-SIFT descriptor
and develop a fast multi-modal image registration technique
based on it. This technique automatically generates a lot of
highly distinctive symmetric-SIFT descriptors for two
images, and the registration is performed by matching the
corresponding descriptors over the two images [21]. These
descriptors are invariant to image scale and rotation, and
are partially invariant to affine transformation. Moreover,
these descriptors are symmetric to contrast, which makes it
suitable for multi-modal image registration. This means that
at the same location of the same underlying object in multi-
modal images which have completely different intensities,
the symmetric-SIFT is able to capture the same descriptors
from two modalities. This method abandons the optimiza-
tion and similarity metric strategy. It works with near real-
time performance and deals with the large non-overlapping
and initial misalignment situations. The proposed technique
analyzes an image across scale-space by creating an image
pyramid with successive Gaussian blur filters, and then cal-
culates the Difference of Gaussian (DoG) between two levels
of the image scale-space pyramid. It then finds maxima and
minima (extrema) across three adjacent DoG levels to find
potential keypoint locations. The symmetric feature is
extracted at a neighborhood around the keypoint.

2. Prior work

2.1. Scale-space theory

Scale-space theory [22–24] was developed for handling
image structures at different scales. The most important

property of scale-space theory is that image representations
can be made invariant to scales by performing automatic
local scale selection. This property is necessary for medical
image registration due to the facts that the resolution of
images may be of different sizes and the distance between
the object and the scanner may vary depending on the cir-
cumstances. Koenderink [22] and Lindeberg [23] indicated
that under a variety of reasonable assumptions the only
possible scale-space kernel is the Gaussian function. For
a given image I(x,y), its scale-space representation is a fam-
ily of derived signals L(x,y; r) defined by the convolution
of I(x,y) with the Gaussian kernel

Lðx; y; rÞ ¼ Gðx; y; rÞ � Iðx; yÞ

and the Gaussian kernel

Gðx; y; rÞ ¼ 1

2pr2
e�ðx

2þy2Þ=2r2

where r is variance of the Gaussian filter, and for r = 0, the
resulting filter g becomes an impulse function such that
L(x,y; 0) = I(x,y), that is, the scale-space representation at
scale level r = 0 is the image I itself. As r increases, L is
the result of smoothing I with a larger and larger filter, there-
by removing more and more of the details which it contains.

2.2. SIFT descriptor

Scale invariant feature transform (SIFT) [25–27] is an
algorithm developed by David Lowe [25,26] to detect and
describe local features in images. SIFT is based on the
scale-space representation of an image, and is invariant
to image scale and rotation and illumination, and to even
affine transformation.

SIFT descriptor has the following properties: (i) It is
invariant to image scale, rotation and illumination, and is
partially invariant to affine transformation and the change
of viewpoint. (ii) It is highly distinctive, in the sense that a
single feature can be correctly matched with high probabil-
ity against a large database of features from many images.
(iii) A small image can generate a lot of local SIFT descrip-
tors, which leads to robustness in image registration. (iv) It
is computationally efficient so that two typical medical
images can be matched with near real-time performance
on a standard PC hardware.

The SIFT descriptors are generated as follows: First, the
keypoints are detected in Gaussian scale-space, including
scales and locations of the keypoints. Then a main orienta-
tion is computed for each keypoint, so that the descriptors
can be invariant to rotation. Finally, the descriptor is
extracted in a local neighborhood around each keypoint
with respect to its scale and orientation. The major stages
of computation used to generate the set of image descrip-
tors are the following.

2.2.1. Keypoints detection
To efficiently detect stable keypoint locations in scale-

space, the original image is convolved with a set of Gauss-
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ian filters at different scales, and then the difference of the
successive Gaussian-blurred images is taken. Keypoints
are then taken as extrema of the Difference of Gaussians
(DoG) that occurs at multiple scales. Specifically, a DoG
image D(x,y; r) is given by

Dðx; y; rÞ ¼ Lðx; y; krÞ � Lðx; y; rÞ
where k is a constant multiplicative factor for separating
two adjacent scales. The DoG function is a 3D matrix. In
order to detect the extrema, each sample point is compared
to its 26 neighbors; if it is larger or smaller than all of them,
it is a keypoint candidate.

Once a keypoint candidate has been found by compar-
ing a pixel to its neighbors, the next step is to perform a
detailed fit to the nearby data for location, scale, and ratio
of principal curvatures. The interpolated location of the
maximum is calculated for better matching stability, and
the interpolation is done using the quadratic Taylor expan-
sion of the DoG function. The candidate keypoint is dis-
carded if its value of the second-order Taylor expansion
is less than a threshold. For eliminating edge responses, a
corner detection algorithm using Hessian matrix is applied
to each keypoint.

2.2.2. Orientation assignment
Before describing the local feature around the keypoint,

an orientation must be assigned to each keypoint based on
local image properties, and the keypoint descriptor can be
represented relative to this orientation, and therefore
achieves invariance to image rotation.

The Gaussian smoothed image, L(r), is selected with the
closest scale of the keypoint, so that all computations are
performed in a scale-invariant manner. Then the gradient
vector for each pixel of L(r), ½Gxðx; yÞ Gyðx; yÞ�T , is esti-
mated using Cartesian coordinates

Gxðx; yÞ
Gyðx; yÞ

� �

¼
@Lðx; yÞ=@x

@Lðx; yÞ=@y

� �

:

For the convenience of next computation, the gradient
vector is converted to ‘‘polar” coordinates, in which it is
given by ½Gqðx; yÞG/ðx; yÞ�T . This conversion is given by

Gqðx; yÞ
G/ðx; yÞ

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
xðx; yÞ þ G2

yðx; yÞ
q

tan�1 Gyðx; yÞ=Gxðx; yÞ

2

4

3

5

An orientation histogram with 36 bins covering the 360�
range of orientations is computed from the image gradients
around the keypoint, the maximum orientation is assigned
to this keypoint, for each other orientation within 80% of
the maximum orientation, a new keypoint with this orien-
tation is created.

2.2.3. The local image descriptor

Given a location, scale, and orientation for each key-
point, it is now possible to describe the local image region
in a manner invariant to scale and rotation. First, the
image gradient magnitudes and orientations are sampled

around the keypoint location using the scale of the key-
point to select the level of Gaussian blur for the image.
In order to achieve orientation invariance, the coordinates
of the descriptor and the gradient orientations are rotated
relative to the keypoint orientation. For each keypoint, the
pixels that fall in a circle around the keypoint are selected
to create the descriptor. Fig. 1 illustrates the computation
of the keypoint descriptor.

First, the image gradient magnitudes and orientations
are sampled in this local neighborhood. In order to achieve
orientation invariance, the gradient orientations are
rotated relative to the keypoints’ main orientation. As
shown in Fig. 1 (b), 16 orientation histograms which evenly
cover 0–360� with eight bins (0

�
; 45

�
; � � � ; 315

�
) are formed.

The gradient magnitude of each pixel that falls into that
small square is accumulated to the corresponding histo-
gram entry. It is important to avoid all boundary effects
in which the descriptor abruptly changes as a sample shifts
smoothly from being within one histogram to another or
from one orientation to another. Therefore, bilinear inter-
polation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each
entry into a bin of histogram is multiplied by a weight of
1�d for each dimension, where d is the distance of the sam-
ple from the central value of the bin as measured in units of
the histogram bin spacing.

3. Symmetric-SIFT descriptor

There are two steps that differ from those of Lowe’s
SIFT descriptor, orientation assignment and keypoint
descriptor.

3.1. Orientation assignment

In Lowe’s paper, each keypoint was assigned one orien-
tation or more orientations based on local image gradient
directions using an orientation histogram with 36 bins.
This approach gave the most stable results in most situa-

Fig. 1. A keypoint descriptor is created by computing the gradient
magnitude and orientation at each image sample point in a region around
the keypoint location, as shown in (a). These are weighted by a Gaussian
window, indicated by the overlaid circle. These samples are then integrated
into orientation histograms of the contents over 4 � 4 sub-regions, as
shown in (b), with the length of each arrow corresponding to the sum of
the gradient magnitudes in that direction within the region.
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tions. However, it is discrete. This means that their direc-
tional resolution is based on the number of histogram bins.
In our experiments, we applied another approach to assign
the main orientation to each keypoint. This approach is
continuous, computationally more efficient and more accu-
rate than Lowe’s. The comparison of the results is pre-
sented in the next section.

We introduced a continuous method, averaging squared
gradients [28,29], to assign the orientation to each key-
point. This method uses the averaged perpendicular direc-
tion to the gradient to represent the keypoints’ orientation.
So the orientation has been limited from 0 to p. It is also
based on local image properties as orientation histogram.
The scale of the keypoint is used to select the Gaussian
smoothed image, L, with the closest scale, so that all com-
putations are performed in a scale-invariant manner. For
each image sample, L(x,y), at this scale, the gradient vector
½Gxðx; yÞ Gyðx; yÞ�T is precomputed

Gxðx; yÞ
Gyðx; yÞ

� �

¼ sgn
@Lðx; yÞ
@y

� �

@Lðx; yÞ=@x

@Lðx; yÞ=@y

� �

The second element of the gradient vector has been cho-
sen to be always positive. The reason for this choice is that
the opposite directions of gradient indicate equivalent ori-
entations in the symmetric descriptor. Gradients cannot be
averaged directly since opposite gradient vectors will then
cancel each other although they indicate the same orienta-
tion. A solution to this problem is proposed by squaring
the gradient vector considered as a complex number before
averaging. The squared gradient vector ½Gsxðx; yÞ Gsyðx; yÞ�T
is given by

Gsxðx; yÞ
Gsyðx; yÞ

� �

¼ G2
xðx; yÞ � G2

yðx; yÞ
2Gxðx; yÞGyðx; yÞ

" #

Next, the Gaussian-weighted average squared gradient
½�Gsxðx; yÞ �Gsyðx; yÞ�T can be calculated. It is averaged in
some neighborhood, which is decided by the Gaussian-
weighted circular window with a r that is 1.5 times the scale
of the keypoint:

�Gsx

�Gsy

" #

¼
Gsx � hr

Gsy � hr

� �

where hr is the Gaussian-weighted kernel, operator *

means convolution. Now the dominant direction of each
neighborhood u, with 0 6 u < p; is given by

u ¼ 1

2

tan�1ð�Gsy=�GsxÞ þ p �Gsx P 0

tan�1ð�Gsy=�GsxÞ þ 2p for �Gsx < 0 \ �Gsy P 0

tan�1ð�Gsy=�GsxÞ �Gsx < 0 \ �Gsy < 0

8

>

<

>

:

For each keypoint whose coordinate is (x,y), the orienta-
tion is assigned to u(x,y).

3.2. Symmetric keypoint descriptor

The old keypoint descriptor cannot deal with multi-
modal image registration. The reason is that in some
images, taking MR-T1- and MR-T2-weighted images, for
example, see Fig. 2a and b, the orientation of the same key-
points is opposite, so Lowe’s approach results in two
totally different descriptors at the same location of two
images. In order to solve this problem, we improved the
descriptor to make it symmetrical to the orientation of
the keypoint. It means that if we change the orientation
of keypoint to its opposite direction, the descriptors are
the same. The potential keypoints are shown in Fig. 2c
and d.

Fig. 3 illustrates the computation of the symmetric key-
point descriptor. Firstly, one old keypoint descriptor is
computed by limiting the direction of gradient from 0 to
p, as shown in Fig. 3a–c. Secondly, the image is rotated
180�, and another old descriptor is computed in the same
way as shown in Fig. 3d–f. Finally, these two keypoint
descriptors are combined to form the symmetric descriptor
as shown in Fig. 3g. The details of computing symmetric
descriptor are given in the following text.

Locations, scales and orientations of keypoints were
computed in the previous steps. Now we want to compute
symmetric descriptors for these keypoints. First, the image
gradients are sampled around the keypoint location using
the scale of the keypoint to select the closest level of the

Fig. 2. Cerebral MR T1 (a) and T2 (b) images. The arrows indicate the opposite directions within a local neighborhood illustrated with a circular window
in the same location of two multi-modal images. (c) and (d) The keypoints detected by symmetric-SIFT algorithm.
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Gaussian smoothed image. In order to achieve orientation
invariance, the selected Gaussian smoothed image and the
gradient orientations are rotated relative to the keypoint’s
orientation. The gradients of all Gaussian smoothed
images have already been computed in ‘Orientation assign-
ment’, so we do not need to recompute them. The orienta-
tions of gradients are restricted from 0 to p, see Fig. 3b.
The reason for doing this is that in multimodality images
the orientations of the gradients at the same location are
likely to be opposite as shown in Fig. 2. Then an orienta-
tion histogram with a size of 4 � 4 � 8 is computed for
each keypoint (Fig. 3 shows a 2 � 2 � 8 array of orienta-
tion histograms). The first two dimensions of the histogram
represent the 4 � 4 = 16 neighborhoods around the key-
point, and the third dimension represents the directional
resolution of each neighborhood. Just like Lowe’s SIFT,
the contribution of each pixel to the histogram is weighted
by the gradient magnitude, and by a Gaussian with r equal
to one-half the width of the descriptor window. This is
illustrated with a circular window in Fig. 3a and b. The his-
togram is normalized to enhance invariance to changes in
illumination.

Assume that one orientation histogram of keypoint is
A(4 � 4 � 8), and the other orientation histogram is
B(4 � 4 � 8) which is formed by rotating 180� of gradients’
image. This is illustrated in Fig. 3d–f. We can easily prove that

Bði; j; kÞ ¼ Að5� i; 5� j; kÞ

where i,j = 1,2, . . ., 4, and k = 1, 2, . . ., 8. So for efficiency,
orientation histogram B does not need to be computed by
rotating gradients’ image. We can get it from orientation
histogram A directly.

In order to achieve symmetric invariance, the two histo-
grams, A and B, must be combined. Assuming that the
symmetric histogram of keypoint is C(4 � 4 � 8), it is com-
puted as follows:

Cði; j; kÞ ¼
c1 � jAði; j; kÞ þ Bði; j; kÞj i ¼ 1; 2

c2 � jAði; j; kÞ � Bði; j; kÞj i ¼ 3; 4

�

where c1 and c2 are two parameters used to tune the pro-
portion of magnitude in the symmetric histogram. Finally,
the symmetric keypoint descriptor, des (a vector of size
1 � 128), is formed from symmetric histogram C.

4. Matching and transformation

4.1. Bilateral matching of keypoints

In this paper, we use the Best-Bin-First (BBF) algorithm
[26,30] to match the keypoints between two images. It is an
algorithm used to identify the approximate closest neigh-
bors of points in high dimensional spaces. This is approx-
imate in the sense that it returns the closest neighbor
with high probability. Supposing that the set of all descrip-
tors of image I1 is DES1, and the set of I2 is DES2, for a
given descriptor des e DES1, a set of distances is defined
as follows:

Dis ¼
X

128

i¼1

desðiÞ � dessðiÞjdess 2 DES2

( )

It is obvious that this set comprises all the distances
between des and descriptors in I2. The dess corresponding
to the biggest element of Dis denotes des’s closest neighbor.

Fig. 3. Symmetric-SIFT descriptor. (a) The gradient magnitude and orientation at each image sample point in a region around the keypoint location. (b)
All gradient orientations are restricted from 0 to p. (c) The accumulated gradient magnitude in each orientation. (d–f) Another accumulated gradient
magnitude obtained by rotating 180 degree of the original neighborhood around the keypoint. (g) The symmetric-SIFT descriptor at this neighborhood.
The elements of top half descriptor are the sum of the corresponding elements shown in (c) and (f). On the other hand, the elements of bottom half
descriptor are the absolute values of difference of the corresponding elements shown in (c) and (f).
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Next, we compare the distance of the closest neighbor to
that of the second-closest neighbor. If the closest neighbor
is significantly closer than the second-closest neighbor, then
we can say it is a match. Otherwise the descriptor des is
discarded.

The BBF algorithm mentioned above is unilateral. It is
used in Lowe’s algorithm and performs well mostly. How-
ever, the unilateral BBF algorithm keeps the matches to be
surjective, but the matches still can be injective. This means
that the unilateral BBF algorithm cannot exclude the fol-
lowing mismatch: two descriptors in I1 are matched to
the same descriptor in I2.

The bilateral BBF algorithm is as simple as the unilate-
ral one. The above unilateral matches are denoted as
M(I1,I2), and the other unilateral matches M(I2,I1) are also
applied, then the same matches between these two sets of
matches are the bilateral matches.

4.2. Discard of incorrect matches

Even the bilateral BBF algorithm cannot guarantee that
all matches are correct. Fortunately, it is very easy to
exclude the incorrect matches using the keypoints’ orienta-
tions and the geometrical size of matches.

Suppose that there are N matches in total, and they are
m(ks1,kt1), m(ks2,kt2), . . ., m(ksN,ktN), where ksi is a keypoint
in I1, kti is a keypoint in I2. It is obvious that the difference
of ksi’s orientation and kti’s orientation is a constant. If the
difference of orientations is much bigger or smaller than
this constant, then the match is incorrect. Our experiments
show that most incorrect matches are excluded by this cri-
terion. Next, we calculate the geometrical size of the
matches. The ratio of distances of the two matches is
defined as rij = d(ksi,ksj)/d(kti,ktj), where d(ksi,kti) is the
Euclidian distance of two keypoints. If there is no affine
transformation, the ratio must be a constant too.

4.3. Transformation of the floating image

The previous subsection has described the rotation and
the size for transformation. The difference of orientations
of two keypoints in a correct match is the angle of rotation,
and the ratio of distances of two correct matches is the
scale difference of two images. So the transformation of a
floating image can be implemented based on these two
parameters. However, the two parameters are not really
constants, so their mean values are used.

5. Experiments and results

In this section, experimental results on CT and MR
images are presented to demonstrate the performance of
our method. These MR images were acquired by a General
Electric Signa 1.5 Tesla scanner, scanning sequence was
SpinEcho, flip angle was 90�, slice thickness was 4 mm,
while repetition time was 400 ms and 1800 ms for T1 and
T2 modalities, respectively; and echo time was 15 ms for

T1 and T2 modalities. The CT images were performed with
spiral technique using a General Electric CT scanner with
sub-millimeter intrinsic spatial resolution.

5.1. Lowe’s SIFT vs. symmetric-SIFT

Our method has been compared with Lowe’s SIFT for
multi-modal medical images. Ten cases are tested and pre-
sented in this subsection. One case is shown in Fig. 4a, in
which the test images are CT- and MR-T1-weighted images
with different scales. The top row shows result of Lowe’s
SIFT, and the bottom row shows result of our symmet-
ric-SIFT. In this case, Lowe’s SIFT generates only one
match, and this match is incorrect. Our method generates
eight matches, and all of them are correct. The comparative
results show that our method can easily deal with multi-
modal image registration, but Lowe’s SIFT cannot.

5.2. Orientation histogram vs. averaging squared gradients

It is mentioned above that a new orientation assignment
algorithm is used for the proposed method. Now, some
comparative results can demonstrate the performance
between two orientation assignment algorithms. In Lowe’s
method, the orientation histogram algorithm is used to
assign an orientation to each keypoint. But the averaging
squared gradients algorithm is used to replace the orienta-
tion histogram in our method.

Ten cases are compared for these two algorithms. The
number of correct matches of our method is about twice
that of orientation histogram algorithm, and the false
matches barely show up in our method. One case is shown
in Fig. 4b. Orientation histogram algorithm (top) gets less
matches than our method (bottom). On top of this, orien-
tation histogram algorithm even gets some incorrect
matches.

5.3. Symmetric-SIFT vs. GEAS method

In this subsection, the results obtained by comparing
our method and the Globally Exhaustive Alignment Search

Fig. 4. Comparative results of registration between cerebral CT- and MR-
T1-weighted images with different scales. (a) Results of Lowe’s SIFT (top)
and our method (bottom). (b) Results of Orientation Histogram proposed
by Lowe (top) and Averaging Squared Gradients proposed in this paper
(bottom).
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method (GEAS) [15,31] are presented. GEAS is proposed
for fast global optimization. Both algorithms are imple-
mented with Matlab (The MathWorks, Inc.) and are tested
on a PC desktop machine (core 2 duo 2.4 GHz). To test the
GEAS method, an initial ROI is needed for each image
pair, which covered approximately 40% of the object in
the overlapping portion of the image. Six cases (rows) are
shown in Fig. 5. In each case, the first image is a floating

image, the second image is a fixed image, the third image
is the result of GEAS, and the fourth image is our result.
Quantitative results are shown in Table 1. These results
are reported in measurement units of degrees for rotation
and pixels for translation. The original images and gold
standard rigid transform for cases 2, 5 and 6 were from
[15]. The gold standard for cases 1, 3 and 4 was estimated
by manually selecting three corresponding points in the

Fig. 5. Comparison of the results obtained by our method and GEAS. For each row, the first image is a floating image, the second image is a fixed image,
the third image is the result of GEAS, and the fourth image is the result of the proposed technique. The sizes of the images are (256 � 256, 256 � 256),
(256 � 256, 256 � 256), (256 � 256, 256 � 256), (256 � 256, 256 � 256), (240 � 295, 262 � 206) and (596 � 456, 515 � 365), respectively.
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image pair. Our method took about 16 s to run all six cases,
with an average of about 2.7 s per registration. Running
GEAS method on all six cases took about 128 s, averaging
about 21.3 s per registration. In cases 3 and 4, GEAS
totally failed to bring the two images into close registra-
tion. In cases 1 and 6, the inaccuracy of GEAS is much big-
ger than that of our method. Only in cases 2 and 5, the
results of GEAS and our method are comparable.

5.4. More results of symmetric-SIFT

Large non-overlapping, large initial misalignment and
scale change image pairs are tested to evaluate the pro-
posed method. Three cases are shown in Fig. 6. The first
case (top) is a large non-overlapping image pair, in which
half of the floating image has been cut. The second case
(middle) is a large initial misalignment image pair. The
third case (bottom) is for testing the scale invariance of
the proposed method. In each case, the first image is a

floating image, the second image is a fixed image, and the
third is the result of registration. The results of all these
cases show that the proposed method brings the two
images into close registration consistently.

6. Conclusions

In this paper, we present a novel technique to register
multi-modal images. This technique automatically gener-
ates a lot of highly distinctive local features for two images,
and the registration is achieved by matching the corre-
sponding features between the two images. The local fea-
tures are symmetric to contrast so that our method can
deal with the multi-modal registration. For each image,
about 100–200 local features are generated. This means
that there are 100–200 keypoints distributed on each image.
This insures that the number of matches is large enough to
register two images. Generally, more than 10 matches
between two images can be identified. Our method works
for both single- and multi-modal registrations.

Experiments show that our method is very fast at regis-
tering two images. This is because our method abandons
the optimization and similarity metric strategy, so it works
with near real-time performance. Actually, the runtime of
our method is mainly spent on the extraction of local fea-
tures. The other steps, keypoints detection, orientation
assignment and matching, took much less time than feature
extraction. So the runtime is nearly in direct proportion to
the number of keypoints. In other words, the runtime is
nearly irrelative to the image size.

The features in our algorithm are invariant to image
scale change and rotation, and are partially invariant to
affine transformation. This is the reason why our method
can register two images with large initial misalignment.
In addition, our method is able to achieve more accurate
registrations even for very large non-overlapping FOVs,
which is due to the fact that the features are extracted in
a small local neighborhood. Many features will be
extracted in the overlapping area of the two images even
if the overlapping is small, so the matches will be estab-
lished between the features in the overlapping area.

Since the features are local, our method cannot deal with
the registration like MRI-PET. It is obvious that the local
features around the same location of MRI and PET are
totally different. In this case, we assume other feature-based
methods will also fail. Currently, our method does not

Table 1
Comparative results for GEAS algorithm and symmetric-SIFT.

Case GEAS Symmetric-SIFT Gold standard

h X Y h X Y h X Y

1 �9.7� �1.0 6.3 �13.1� 1.4 5.6 �13.7� 0.3 5.4
2 0.7� �18.0 3.8 0.6� �15.9 3.5 1.8� �17.3 2.8
3 �6.0� �9.4 44.2 �0.5� 4.1 14.7 0� 4.2 14.1
4 �0.2� �7.0 �1.0 �13.2� �0.1 �1.0 �13.5� 0 0
5 0.1� 12.8 67.0 1.3� 14.5 68.7 �0.3� 14.4 66.4
6 0.2� �169.4 119.4 �4.0� �161.0 130.4 �3.6� �166.5 125.5

Fig. 6. Registration of three cases involving large non-overlapping, large
initial misalignment and large scale change. All these cases show that the
proposed method brings the two images into close registration
consistently.
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incorporate 3D registration. It is much complicated in 3D
situation because the rotation invariance of local feature
becomes much more difficult in higher dimensions.
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